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Abstract

The protein interaction network presents one perspective for understanding cellular processes. Recent
experiments employing high-throughput mass spectrometric characterizations have resulted in large datasets
of physiologically relevant multi-protein complexes. We present a unified representation of such datasets
based on an underlying bipartite graph model that is an advance on existing models of the network. Our
unified representation allows for weighting of connections between proteins shared in more than one complex
as well as addressing the higher level of organization that occurs when the network is viewed as consisting
of protein complexes that share components. This representation also allows for the application of the
rigorous MinMaxCut graph clustering algorithm for the determination of relevant protein modules in the
networks. Statistically significant annotations of clusters in the protein-protein and complex-complex net-
work using terms from the Gene Ontology suggest that this method will be useful for posing hypothesis
about uncharacterized components of protein complexes or uncharacterized relationships between protein
complexes.

Introduction

Proteins carry out most essential cellular processes in complex multi-protein assemblies. These protein com-

plexes perform activities needed for metabolism, communication, growth and structure. A systematic iden-

tification, characterization and understanding of these molecular machines of life will provide an essential

knowledge base and link proteome dynamics and architecture to cellular function and phenotype. A variety

of experimental and computational approaches have been employed to deduce the constituents of protein

macromolecular complexes. Experimental approaches such as the yeast two-hybrid genetic screen yield binary

interaction data, while more recent high-throughput methods combine tagged “bait” proteins and protein

complex purification schemes with mass spectrometric measurements to yield physiologically relevant data

on intact multi-protein complexes [1, 2, 3, 4]. Taken together, data from these experiments approximate the

network of interactions between proteins and protein complexes that govern most cellular processes.

An important issue is the effective representation of the functional relationships between various parts

of the interaction network [5]. So far most studies have represented protein interaction data as a map of

binary interactions with uniformly weighted connections between interacting proteins [6, 7]. For multi-protein

complex data, this binary model assumes a pairwise interaction between all constituents in a complex. This
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Figure 1: A bipartite graph representation of a hypothetical protein complex dataset. The p-nodes represent
proteins and c-nodes represent experimentally-determined protein complexes. An edge between a p-node and
a c-node indicates that the protein is contained in the protein complex.

equal weighting, however, is an oversimplification since physical interactions between constituents cannot be

unambiguously described for all complexes without rigorous structural analysis. Some efforts have been made

to improve upon the binary interaction model. The “spoke” model [7] assumes pairwise interactions only

between the purification “bait” and proteins that co-purify in the complex. A hypergraph model extends

the network structure to allow hyperedges corresponding to protein complexes to connect arbitrarily many

proteins in the network [8].

The most important limitation of existing models of the protein interaction network is their inability

to represent a higher order organization of the proteome that results from the consideration of network

relationships between protein complexes. A recent review by Gavin and Superti-Furga discusses the major

issues concerning protein complexes and proteome organization and gives several examples of the modularity

of protein complexes and their ability to share components and interact in complex cellular processes [9]. A

model of the protein interaction network that adequately deals with relationships between protein complexes

would be an important step toward a framework for a systems-level understanding of cellular processes.

A Bipartite Graph Model of Protein Complex Data

We propose a novel representation of multi-protein complex data that treats proteins and protein complexes

in a unified manner. This representation emphasizes the “duality” of the relationship: a protein complex is

characterized by its constituent proteins, while the interaction between two proteins can be gauged by the

number of protein complexes that contain these proteins. This duality is best captured by a bipartite graph

(Figure 1) specified by an adjacency matrix B, in which a protein complex is represented by a column and

a protein is represented by a row. This bipartite representation of a multi-protein complex dataset leads

to a coherent framework for interaction networks: (1) The protein-protein (p-p) interaction network arises

naturally. If we define the interaction strength between two proteins as the number of complexes that contain

the two proteins, this interaction strength is given precisely by the adjacency matrix BBT . (2) Importantly, a

protein complex - protein complex (c-c) interaction network also arises from this representation. If we define

the interaction strength between two protein complexes as the number of common proteins shared between

them, then this interaction strength is given by the adjacency matrix BT B. These interaction networks form a

unified framework which overcomes two shortcomings of previous work: (a) The c-c interaction network yields

a higher level organization of cellular processes. (b) The interaction strength of connections in the networks

is more realistic than simple uniform weighting. See the Methods Section for more details.

The more quantitative interaction strength of network connections in our dual representation allows for the

application of a rigorous graph clustering algorithm [10]. The goal of clustering the protein interaction network

is to determine its component modules, their functional annotations and the relationships between them. A
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module in a biological network is loosely defined as a functional unit separable from the rest of the network.

In this context the terms “modules” and computationally discovered “clusters” are interchangeable. Our

hypothesis is that such computationally discovered clusters would encompass proteins related through physical

and possibly temporal associations in functionally coincident macromolecular complexes (p-p network), or

reveal diverse relationships among cellular process composed of functionally related protein complexes (c-c

network).

Methods

Protein Complex Data Can Be Modeled as a Bipartite Graph

The representation of a multi-protein complex dataset as a bipartite graph allows us to immediately infer a

number of important quantities and to apply a large body of existing graph techniques.

A bipartite graph has two type of nodes: p-type nodes that denote proteins (or p-nodes) and c-type nodes

that denote protein complexes (c-nodes). This graph structure only allows connections between p-nodes and

c-nodes. Thus a protein complex (c-node) has edges connecting to each of its constituent proteins (p-nodes)

(Figure 1). A bipartite graph is uniquely determined by its adjacency matrix B = (bij). Let c1, c2, · · · , cn

denote protein complexes and p1, p2, · · · , pm denote constituent proteins. Define

bij =

{

1 if protein pi is in protein complex cj

0 otherwise
(1)

i.e., a protein complex is represented by a column in B where each entry is either 1 or 0 with a 1 indicating

that the complex contains the protein of the corresponding row. Similarly, a protein is represented by a row in

B. For consistency, we refer to the relationship between proteins and complexes represented by the bipartite

graph as the p-c network. Starting from the p-c network, we can naturally obtain the following two networks.

Protein-Protein Interactions (p-p Network)

The interaction strength between two proteins pi, pj is

(BBT)ij =

(

# of protein complexes

containing both proteins pi, pj

)

(2)

Note (BBT)ii =
∑

j bij = the number of protein complexes that protein pi is involved. We call this the weight

of protein pi.

Complex - Complex Associations (c-c network)

The interaction strength between two protein complexes ci, cj is

(BTB)ij =

(

# of proteins shared by

protein complexes ci, cj

)

(3)

Note that (BTB)jj =
∑

i bij = the number of proteins contained in the protein complex cj . We call this the

weight of protein complex cj .
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MinMaxCut Clustering

The MinMaxCut graph clustering algorithm [11] can be applied equally well to the p-p or c-c networks. Let

the weight matrix W = (wij) denote the pairwise connection strength between proteins, or between protein

complexes. We wish to partition the connection network G into two subnetworks G1, G2, based on a min-max

clustering principle. The total connection strength between G1, G2 is

s(Gp, Gq) =
∑

i∈Gp

∑

j∈Gq

wij , (4)

The total connection strength within a cluster G1 or G2 is similarly defined. The clustering principle requires

minimizing s(G1, G2) (weak connections been different clusters) while simultaneously maximizing s(G1, G1)

and s(G2, G2) (strong connections within each clusters). These requirements are satisfied by the objective

function,

J(G1, G2) =
s(G1, G2)

s(G1, G1)
+

s(G1, G2)

s(G2, G2)
. (5)

The solution of the clustering problem is represented by an indicator vector q, where the ith entry of q is

q(i) =

{

a if i ∈ G1

−b if i ∈ G2

(6)

where a and b (0 < a, b < 1) are constants. One can prove that

min
q

J(G1, G2) ⇒ min
q

qT (D − W )q

qT Dq
, (7)

where D = (di) is a diagonal matrix, di =
∑

j wij . Now, relaxing q(i) from discrete indicator in Eq.6 to a

continuous values in [−1, 1], the solution q of the minimization problem satisfies

(D − W )q = λDq. (8)

The desired solution is the eigenvector q2 corresponding to the second smallest eigenvalue. From Eq.6, we

can recover clusters by the sign of q2, i.e., G1 = {i | q2(i) ≤ 0}, G2 = {i | q2(i) > 0}. In general, the optimal

dividing point could shift away from 0; we search the dividing point q(icut)

G1 = {i | q(i) ≤ q(icut)}, G2 = {i | q(i) > q(icut)}.

(icut = 1, · · · , n−1) such that J(G1, G2) is minimized (the minimum value is Jopt). This gives the final clusters

G1 and G2.

Hierarchical Divisive Clustering

Divisive clustering starts from the top by treating the whole dataset as a single initial cluster. It recursively

splits the current cluster (a leaf node in a binary clustering tree) into two sub-clusters. Two important issues

are: (1) how to select the next candidate cluster to split and (2) when to terminate the recursive process.

Given a current cluster Gk, we wish to decide whether to further split it into two sub-clusters. We apply

MinMaxCut to Gk. If Jopt is large then the overlap between two resulting sub-clusters is large in comparison

to the within-sub-cluster similarity and hence cluster Gk should not be further split. Thus the optimal value

Jopt is a measure of “cluster cohesion”.
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Figure 2: Distribution of the degree (number of proteins a given protein interacts with) in the protein-protein
interaction network. This curve approximates a power-law distribution indicating that it is a scale-free network
topology.

At every cluster splitting in the divisive process we compute the cluster cohesion for each of the sub-

clusters. To select the next cluster to split, we select among all current clusters the one with the smallest

cohesion. As the cluster splitting process continues, clusters with small cohesion are split and the cohesion

of the resulting clusters increases. To terminate the divisive process, we set a threshold for cohesion h = 0.6,

i.e., clusters with cohesion greater than h will not be split further. A greater cohesion threshold will lead to

“tighter” clusters. h is the only parameter in the MinMaxCut algorithm.

Resources

(1) The February 2003 release of the Gene Ontology (GO) (http://www.geneontology.org) was used to obtain

the annotated terms for yeast proteins from the TAP-MS dataset [4]. (2) A freely distributed perl library

interface to the Gene Ontology database [12] was employed for all calculations relating to GO annotations and

(3) a perl library interface to the GraphViz package [13] was used to create the graph representations. (4) The

primary sequences for all proteins analyzed were obtained from the Saccharomyces Genome Database [14]. (5)

The EMBOSS toolkit [15] was used for calculations of sequence properties and (6) the PsiPred program [16]

was used for secondary structure determination. (7) A website with additional results related to this paper is

located at http://frna.lbl.gov/complex.

5



Results and Discussion

Multi-Protein Complex Dataset

Two datasets summarizing high-throughput analysis of multi-protein complexes are available for the yeast

Saccharomyces cerevisiae. Coupling different purification (immunoprecipitation and tandem affinity purifica-

tion (TAP)) and labeling schemes with mass spectrometry (MS), both studies used bait proteins to identify

physiologically intact protein complexes [3, 4]. A recent analysis used a maximum likelihood model and

gene expression correlation coefficients to evaluate the reliability of various high-throughput protein-protein

interaction datasets and concluded that the TAP-MS dataset had the highest accuracy for predicting pro-

tein function [17]. Another analysis compared the accuracy and coverage of protein interactions for several

high-throughput datasets relative to trusted reference sets of manually annotated protein complexes from the

Munich Information Center for Protein Sequences (MIPS) and the Yeast Proteome Database (YPD) [18].

This analysis also revealed a superior accuracy to coverage tradeoff for the TAP-MS data relative to other

methods. Hence we have chosen this dataset to illustrate our model. More information about the TAP-MS

dataset is available at http://yeast.cellzome.com.

We represent this dataset as a bipartite graph with adjacency matrix B. The symmetric matrix BBT

defines the interaction strength of the protein-protein interaction network from the underlying bipartite graph

model. This p-p network shows a scale free topology indicating that proteins in the network have a wide range

of connectivities (Figure 2). Previous work has speculated that connectivity in the network might correlate

with observable biological properties such as the rate of protein evolution [19].

Clusters in the p-p Interaction Network Define Modules of Protein Complexes

Given a network of protein interactions, one can computationally predict modules and annotate these modules

with a biological context. A computationally predicted protein module is defined as a highly connected region

or structure in the network. Previous work has employed “k-cores” and other density-based methods to

partition the protein interaction network [7, 20]. In this paper we identify clusters in the protein interaction

network using a graph clustering algorithm, MinMaxCut, which was shown to be effective for class discovery

in gene expression microarray data for lymphoma [10] (see Methods section). We apply MinMaxCut to the

protein interaction network specified by the adjacency matrix BBT . The non-uniform interaction strength

between proteins gives a more realistic characterization of the network. Following, we present an analysis of

the p-p interaction network, highlighting only the main results. A comprehensive analysis of these results is

deferred to a later paper.

Figure 3 shows the interaction strength (the adjacency matrix BBT ) of the p-p network sorted after clus-

tering. Several clusters exhibit high overall interaction strength and most encompass biologically meaningful

complexes. To support our supposition that clusters in the p-p network encompass physiologically relevant

protein complexes we compared the discovered p-p clusters to the TAP-MS protein complexes that are the

basis of the bipartite graph model. To quantify this correspondence we define the match coefficient

ρ = n(Pk, cj)/ min(|Pk|, |cj |)

where |Pk| =number of proteins in p-p cluster Pk, |cj |=number of proteins in TAP-MS protein complex cj ,

and n(Pk, cj) = number of shared proteins between Pk and cj . The constituents of a protein cluster Pk may all

be contained in an experimental protein complex ci; or conversely, the constituents of ci may all be contained
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Figure 3: Predicted clusters of the p-p network. The color shows the normalized interaction strength of
connections in the p-p network. Clusters with less than 20 proteins are not shown. The most highly connected
protein in each cluster is shown by its protein name and the number of TAP-MS protein complexes this cluster
matches (with ρ > 0.7) is shown after the protein name. Axes correspond to proteins. For example, cluster
P28 with protein Smd2 has 112 proteins and overlaps 6 TAP-MS protein complexes. A larger figure showing
all clusters is available, see Methods section, Resources (7).

in Pk; both cases result in a perfect match with ρ = 1. Using this match coefficient and a threshold of 0.7

we found that 65 of 66 predicted p-p clusters match to at least one experimental protein complex (Figure 4).

This is strong evidence that clusters in the p-p network define modules of physiologically intact protein

complexes and furthermore that any clustered assemblies with uncharacterized constituents might correspond

to novel interactions or functional relationships. Clearly those protein clusters which match two or more

TAP-MS protein complexes are most interesting. For example, Figure 5 details how the largest cluster in the

p-p network denoted P28 (labeled with Smd2 in Figure 3) matches six TAP-MS protein complexes. These

matching complexes are also shown as six points in Figure 4 indicated by the arrow.

Modules in the p-p Network Have Characteristic Physical and Chemical Properties

The assembly, thermodynamic stability, and functionality of protein complexes are controlled by various envi-

ronmental conditions in the cell. Surface accessible amino acid residues can be covalently modified to regulate

the functional state of protein complexes. Non-covalent ligand binding can also modulate the functional state
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Figure 4: A summary of the overlap between the constituents of predicted p-p clusters and TAP-MS protein
complexes. Match coefficients are indicated by the symbols. The solid line indicates where protein complexes
and p-p clusters are of the same size. The arrow indicates the complexes that overlap a p-p cluster, designated
P28, which is discussed in the text.

Lys 100 Asn 56 Val 30 Ile 24
Asp 89 Gln 50 Tyr 29 Ser 23
Arg 73 Cys 39 Met 29 Leu 22
Pro 70 His 33 Trp 28 Gly 21
Glu 66 Ala 31 Thr 28 Phe 21

pI 169 Basic 149 Acidic 97 MW 60
Aromatic 30 Helix 37 Beta-Sheet 33 Coil 27

Table 1: F -statistics of amino acid composition (top) and physical properties (bottom) across all clusters in
p-p interaction network.

of protein complexes. Hence we would expect that the proteins of discovered clusters in the p-p network

would be distinguishable by intrinsic physical and chemical characteristics. We calculated an F -statistic for

protein physical-chemical properties and amino acid composition to see if protein clusters exhibit any signif-

icant trends that might suggest distinguishing features of their interactions. Given a particular property f

across n proteins and K clusters containing these proteins the F -statistic is defined as

F =
1

K − 1

K
∑

k=1

nk(f̄k − f̄)2
/ 1

n − K

K
∑

k=1

(nk − 1) σ2

k

where f̄ is the average across all proteins, f̄k and σk are the average and variance within p-p cluster Pk, and

nk is the size of cluster Pk. The magnitude of the F -statistic is a measure of how well the given property

distinguishes between clusters. The various properties and their F -statistics are listed in Table 1. To assess the

statistical significance, we compute the F -statistic for the same dataset when proteins are randomly assigned
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Aar2 Aar2
Brr1 Brr1 Brr1 Brr1 Brr1
Bur2 Bur2
Cbc2 Cbc2 Cbc2
Cdc33 Cdc33 Cdc33 Cdc33
Cdc40 Cdc40
Cef1 Cef1 Cef1
Clf1 Clf1 Clf1 Clf1 Clf1 Clf1
Cus1 Cus1 Cus1 Cus1
Dhh1 Dhh1 Dhh1
Dib1 Dib1 Dib1 Dib1 Dib1
Ecm2 Ecm2 Ecm2 Ecm2 Ecm2
Gcn2 Gcn2
Hrt2 Hrt2
Hsh155 Hsh155 Hsh155 Hsh155 Hsh155
Hsh49 Hsh49
Hta1 Hta1 Hta1
Img1 Img1
Isy1 Isy1
Krs1 Krs1
Lea1 Lea1 Lea1 Lea1 Lea1
Lsm1 Lsm1 Lsm1
Lsm2 Lsm2 Lsm2
Lsm3 Lsm3
Lsm4 Lsm4 Lsm4 Lsm4 Lsm4
Lsm5 Lsm5 Lsm5
Lsm6 Lsm6 Lsm6
Lsm7 Lsm7 Lsm7
Luc7 Luc7 Luc7 Luc7 Luc7
Mrp7 Mrp7
Mrpl28 Mrpl28
Mrpl3 Mrpl3
Mrpl35 Mrpl35
Mrpl38 Mrpl38
Mrpl4 Mrpl4
Mrpl8 Mrpl8
Mrps5 Mrps5
Msh4 Msh4
Msl1 Msl1 Msl1 Msl1
Mud1 Mud1 Mud1 Mud1 Mud1
Nab3 Nab3
Nam7 Nam7
Nam8 Nam8 Nam8
Npl3 Npl3 Npl3
Nup60 Nup60
Pat1 Pat1 Pat1
Prp11 Prp11 Prp11 Prp11
Prp18 Prp18
Prp19 Prp19 Prp19 Prp19 Prp19
Prp2 Prp2
Prp21 Prp21 Prp21 Prp21 Prp21
Prp22 Prp22
Prp24 Prp24 Prp24
Prp28 Prp28
Prp3 Prp3 Prp3 Prp3
Prp31 Prp31 Prp31 Prp31 Prp31
Prp38 Prp38 Prp38
Prp39 Prp39 Prp39 Prp39 Prp39
Prp4 Prp4 Prp4 Prp4 Prp4
Prp40 Prp40 Prp40 Prp40 Prp40
Prp42 Prp42 Prp42 Prp42 Prp42
Prp43 Prp43 Prp43 Prp43 Prp43 Prp43
Prp45 Prp45
Prp46 Prp46 Prp46 Prp46 Prp46 Prp46
Prp6 Prp6 Prp6 Prp6 Prp6
Prp8 Prp8
Prp9 Prp9 Prp9 Prp9
Rlr1 Rlr1
Rse1 Rse1 Rse1 Rse1 Rse1 Rse1
Scp160 Scp160
Sen1 Sen1
Sgv1 Sgv1
Slu7 Slu7
Smb1 Smb1 Smb1 Smb1 Smb1
Smd1 Smd1 Smd1 Smd1 Smd1
Smd2 Smd2 Smd2 Smd2 Smd2 Smd2 Smd2
Smd3 Smd3 Smd3 Smd3 Smd3
Sme1 Sme1 Sme1 Sme1
Smx2 Smx2 Smx2 Smx2
Smx3 Smx3 Smx3 Smx3
Snp1 Snp1 Snp1 Snp1 Snp1
Snt309 Snt309 Snt309 Snt309 Snt309
Snu114 Snu114 Snu114 Snu114 Snu114 Snu114
Snu23 Snu23 Snu23
Snu56 Snu56 Snu56 Snu56 Snu56
Snu66 Snu66 Snu66 Snu66 Snu66
Snu71 Snu71 Snu71 Snu71 Snu71
Spp381 Spp381
Srb2 Srb2 Srb2 Srb2
Sro9 Sro9 Sro9
Sto1 Sto1 Sto1 Sto1 Sto1 Sto1
Syf1 Syf1 Syf1
Tif4631 Tif4631 Tif4631
Tif4632 Tif4632 Tif4632
Tos4 Tos4
YCR063W YCR063W YCR063W
YDL175C YDL175C
YDL209C YDL209C YDL209C YDL209C YDL209C
YGL128C YGL128C YGL128C YGL128C
YGR278W YGR278W YGR278W
Yhc1 Yhc1 Yhc1 Yhc1
YHR156C YHR156C
YJR084W YJR084W YJR084W YJR084W
Yju2 Yju2
YKL214C YKL214C
YLR424W YLR424W YLR424W YLR424W YLR424W YLR424W
YML025C YML025C
YML117W YML117W
YNL224C YNL224C

P_28 C_128 C_129 C_155 C_158 C_160 C_161

Nrp1
Pub1
Sgn1

Asc1
Dcp2
Erb1
Nop1
YER006W
YNR053C

Kap95
Nrd1
Srp1

Yef3 Rvb2
YLR409C

Figure 5: Protein cluster P28 matches six TAP-MS protein complexes (labeled as published [4]). All proteins
in the cluster and matched protein complexes are listed. Proteins shared by the p-p cluster and at least
one TAP-MS experimental protein complex are listed above the dividing line. Below the line are proteins
not shared. The match coefficients are ρ(P28, c128) = 0.83, ρ(P28, c129) = 0.91, ρ(P28, c155) = 1, ρ(P28, c158) =
1, ρ(P28, c160) = 0.98, ρ(P28, c161) = 0.98.
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to clusters. The F -statistic for randomly shuffled data are approximately 16± 8 across these quantities. Thus

an F -statistic above 30 is significant.

Protein complexes can be characterized as non-obligate (temporary) or permanent where the native state

is oligomeric. The surfaces that mediate the interactions in these two types of complexes necessarily differ

in structural and physical properties [21]. Since using different values for the cluster cohesion parameter

(See Methods section) of the MinMaxCut clustering algorithm is likely to result in discovered protein clusters

that encompass differing ratios of these two types of complexes we would expect that the calculated physical

properties would be somewhere intermediate between those expected for the two types of complexes. Indeed,

this seems to be the case if we consider the F -statistics for amino acid composition. Interactions in temporary

protein complexes which function dynamically in cellular processes are often tuned by the effects of polar

groups (Lys, Arg, Gln, Asn, Asp) which define a complementary electrostatic surface, hydrogen bonding

(Arg) and stabilizing hydrophobic interactions (proline). Methylation of Arg and Lys, and acetylation of

Lys are well known covalent modifications of surface amino acids that could influence complex formation.

Cys participates in the formation of disulfide bridges that can stabilize more permanent complexes as well as

more dynamic interactions [22, 23]. Finally studies have shown that secondary structural features are often

uniformly distributed at protein interaction interfaces which is consistent with their relative unimportance in

the above calculations [21].

Supercomplexes Encompass Modules from the p-p Network

In previous analyses of protein complex data only the resulting pairwise interaction network has been examined

[18, 7, 6]. The pairwise interaction network, however, yields an incomplete and noisy version of proteomic

organization. As evidenced by recent high-throughput experiments for determining protein complexes: protein

complexes are apt to share components and hence define a network of interconnected cellular processes [9].

No study to date has adequately represented the higher order organization of this network. In our dual

representation of the data, the adjacency matrix BT B defines the connectivity between protein complexes

where the connection is weighted by the number of shared proteins. Figure 6 shows the result of a MinMaxCut

clustering of this network. Clusters are labeled with the most frequently occurring proteins as well as the

number of TAP-MS protein complexes corresponding to a particular biological process [4]. We introduce the

terminology “supercomplex” to denote a cluster in the complex-complex association network.

Since we expect supercomplexes to represent the diversity of interconnected cellular processes it would be

consistent if each supercomplex showed high match coefficients with various modules from the p-p interaction

network. Figure 7 summarizes the overlap between predicted supercomplexes and predicted clusters in the

p-p interaction network. Most supercomplexes show overlap with several predicted p-p clusters and, in some

instances, the same predicted p-p cluster occurs in multiple supercomplexes. In one instance the TAP-

MS complexes overlapping a cluster in the p-p network and and the TAP-MS complexes contained in a

supercomplex are in one to one correspondence (P28 listed in Figure 5).

Computationally Discovered Modules are Biologically Consistent

We provide here preliminary evidence that computationally discovered modules in the dual representation are

biologically consistent. To determine a biological context we used a set of controlled vocabularies defined by

the Gene Ontology for which most of the proteins in our dataset have been annotated with at least one term

[14]. The Gene Ontology consists of three orthogonal ontologies: biological process, molecular function and

10



0 0.2 0.4

Adh1

Vps1

Yef3

Hsc82

( 210 )

( ,3 , , 2 , ,2 ,12 )

Kap123

Gfa1

Gcn20

Clu1

( 125 )

( ,6 ,2 , 2 ,2 ,2 ,2 )

Ecm29
( 104 )

( 3 , , )
Rvb2
( 25 )

( , , , , )
Fks1
( 29 )

( , ,3 )
Pfk1
( 30 )

( , ,2 , )
Nip1
( 104 )

( ,2 , ,2 )
Cka1
( 66 )

( , , ,3 )

Smd2

( 121 )

( 6 )

Adh1

Vps1

Yef3

Hsc82

( 210 )

( ,3 , , 2 , ,2 ,12 )

Kap123

Gfa1

Gcn20

Clu1

( 125 )

( ,6 ,2 , 2 ,2 ,2 ,2 )

Ecm29
( 104 )

( 3 , , )
Rvb2
( 25 )

( , , , , )
Fks1
( 29 )

( , ,3 )
Pfk1
( 30 )

( , ,2 , )
Nip1
( 104 )

( ,2 , ,2 )
Cka1
( 66 )

( , , ,3 )

Smd2

( 121 )

( 6 )

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Cell cycle
Cell polarity & structure
Intermediate & energy metabolism
Membrane biogenesis & traffic
Protein Synthesis & turnover
Protein/RNA transport
RNA metabolism
Signalling
Transcription/DNA maintenance

Figure 6: Predicted protein supercomplexes (clusters of the c-c network). Several large supercomplexes
are shown. Each supercomplex is labeled with the most frequently occurring proteins, the number of non-
redundant constituent proteins, and the relevant biological processes inferred from the participating TAP-
MS experimental protein complexes. Axes correspond to TAP-MS complexes. Color represents normalized
connection strength. A larger figure showing all clusters is available, see Methods section, Resources (7).
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Figure 7: Overlap between computed supercomplexes (clusters of c-c network) and predicted clusters in the
p-p network. The match coefficients defined by shared protein constituents are indicated.

cellular component [24]. Given that p-p clusters are defined by the proteins sharing maximal membership

within the same experimentally determined protein complexes and c-c clusters capture relationships between

protein complexes, we would expect the cellular component and biological process ontologies to give the most

coherent annotations. We map each protein in a p-p cluster to the most specific ontological term assigned to

it. For c-c clusters we determine a non-redundant union of all protein constituents and map these to their most

specific annotated terms. The GO ontologies are organized as directed-acyclic graphs. This data structure

allows us to ascend the graph from more specific terms to determine the set of common “parent” terms that

describe a predicted cluster’s functional categories. We approximate the significance of that annotation by

calculating the probability that n or more proteins would be assigned to that term if we assigned proteins

randomly to the cluster. This probability is calculated as

P =
∑

n≤j≤N

(

N

j

)

pj(1 − p)N−j

where p is ratio of proteins in the genome annotated to the given term, n is the number of proteins in the

cluster annotated to the term, and N is the number of proteins in the cluster. This P-value allows us to rank

annotations according to significance and to reason about the cellular roles for a given cluster. If a subgraph

composed from the significant terms is biologically consistent, that infers the validity of the computationally

determined module.

We briefly present two examples: the largest cluster in the p-p network denoted P28 and the largest cluster

in the c-c network denoted C47. Since these large clusters encompass proteins with a range of connection

weights in the respective networks and hence probably encompass proteins and complexes of diverse function,

we believe that they represent difficult examples to assign biological significance, and therefore adequately

demonstrate the robustness of our method. P28 contains 112 proteins as depicted in Figure 5. Figure 8 shows

the most significant ontological terms from the cellular component ontology corresponding to the proteins in
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Figure 8: Subgraph of the gene ontology (Component) corresponding to a subset of the most prevalent
annotations of proteins in p-p cluster P28. Significant nodes are labeled with the number of proteins annotated
directly or indirectly to that term and the P-value for the term.

this cluster. Annotations to the general terms nucleus (76 proteins) and ribonucleoprotein (RNP) complex

(81 proteins) as well as more specific terms such as spliceosome complex (48 proteins), major (U2 dependent)

spliceosome (22 proteins) and commitment complex (12 proteins) clearly indicate that these proteins are

components of the pre-mRNA splicing machinery. It is known that the transcriptional machinery consists

of several coupled multi-protein machines that carry out separate steps in gene expression coordinated via

interactions with the carboxy terminal domain of the RNA polymerase II large subunit [25].

The predicted protein cluster P28 is also the only p-p cluster that corresponds exactly with a supercomplex.

While most of the proteins in the cluster have been accounted for in stable complexes, there are also some more

hypothetical relationships suggested by the GO annotations. For example, ten proteins are annotated to be

associated with the mitochondrial ribosome. Constituents of the mitochondrial ribosome are encoded in both

the nuclear and mitochondrial genomes. A mechanism that coordinates the expression of these constituents

has been hypothesized, given that the stoichiometric synthesis of all mitochondrial ribosomal components is

likely to be regulated to avoid wasting metabolic energy [26]. Hence the clustering of these proteins suggests a

possible coupling between gene expression in the nucleus and mitochondria. Additionally, there is evidence that

splicing can enhance export of mRNA from the nucleus [27] and that combinatorial binding of heterogeneous

ribonucleoproteins to mRNA may regulate post-transcriptional events such as nuclear export, mRNA stability,

and nonsense mediated decay [28]. That many of our proteins are annotated to these terms (commitment

complex, mRNA-nucleus export, translation initiation, polysome, cytoplasmic transport, mRNA splicing) at

least suggests these relationships and their interdependence. See the Methods section, Resources (7) for a

complete list of annotations.

The largest supercomplex C47 illustrates how diverse cellular process can be coupled via a nexus of intercon-

nected protein complexes. Figure 9 shows the most significant GO-process annotations for this supercomplex
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Figure 9: Subgraphs of the gene ontology (Process) corresponding to a subset of the most prevalent annotations
of proteins in supercomplex C47. Significant nodes are labeled with the number of proteins annotated directly
or indirectly to that term and the P-value for the term.

(210 proteins). The GO-process annotations suggest that this supercomplex encompasses complexes involved

in chromatin dynamics and transcriptional regulation and initiation as well as cell cycle control, DNA replica-

tion and repair, and signal transduction (for clarity only a subset of the significant annotations are shown in

Figure 9). See the Methods section, Resources (7) for a complete annotation. We determined a list of curated

protein complexes from the MIPS Catalog (http://mips.gsf.de) that are highly represented in the supercom-

plex. A subset of this list is shown in Table 2. Several of these complexes are known chromatin regulators in

yeast (see highlighted complexes in Table 2) and are necessary for such processes as transcriptional initiation,
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MIPS Listing # ORFs # ORFs in C47

RNA Pol II holoenzyme 35 23
Kornberg’s mediator 21 21
Other transcription 73 17
HAT A 15 14
TFIID 13 13
SAGA 14 13
Ada-Spt 14 13
TAFIIs 12 12
DNA repair 33 9
RSC 10 6
ADA 6 6
Replication fork 30 6
DNA mismatch repair 5 5
Cytoplasmic translation initiation 27 4
SAGA-like 5 4
Nucleotide excision repairosome 16 3
RNA Polymerase III 13 3
Replication factor A 3 3
Actin-associated motorproteins 7 3
MSH2/MSH3 3 3
Srb10p 4 3
NEF4 2 2
eIF4A 2 2
NuA4 2 2
Nuclear pore 24 2
Sir 2 2

Table 2: A sample of known protein complexes from the curated MIPS catalog which have many constituents
in supercomplex C47. Listed are the name of the complex, the number of known ORFs in the complex, and
the number of ORFs from the complex present in C47. Rows containing complexes implicated in chromatin
dynamics are shaded [29].

certain types of DNA repair and silencing mechanisms, and cell cycle progression [30, 31, 32].

Conclusion

In this paper we propose a dual representation that unifies three interaction networks, the protein - protein

complex (p-c) network, the protein - protein interaction (p-p) network and the protein complex - protein

complex (c-c) network under a single framework. The resulting protein - protein and complex - complex in-

teraction networks have more realistic interaction strengths compared to the conventional binary interaction

networks with equal weighting. This results in a coherent framework for computational detection of mod-

ules which occur as clusters or densely connected regions in the dual representations. We apply a rigorous

graph clustering algorithm to find these modules. Basic statistical analysis revealed that differences between

modules in the protein interaction network are reflected by characteristic physical and chemical properties of

the protein interactions. We emphasize the protein complex - protein complex (BT B) network as reflecting

a higher-order organization of the proteome. The largest supercomplex has 210 non-redundant constituent
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proteins and is involved in a number of cellular processes. Use of the Gene Ontology revealed that the biolog-

ical annotations of computationally discovered modules are statistically significant and that this method can

facilitate the functional annotation of uncharacterized constituents in future multi-protein complex datasets as

well as the discernment of novel functional relationships between protein complexes. As more and higher qual-

ity protein complex data becomes available, we expect this unified representation of interaction networks and

associated clustering methodology to evolve into a useful framework for studying this aspect of systems biology.
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